Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 20(1): 33, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32050891

RESUMO

BACKGROUND: Production of antibiotics to inhibit competitors affects soil microbial community composition and contributes to disease suppression. In this work, we characterized whether Streptomyces bacteria, prolific antibiotics producers, inhibit a soil borne human pathogenic microorganism, Streptomyces sudanensis. S. sudanensis represents the major causal agent of actinomycetoma - a largely under-studied and dreadful subcutaneous disease of humans in the tropics and subtropics. The objective of this study was to evaluate the in vitro S. sudanensis inhibitory potential of soil streptomycetes isolated from different sites in Sudan, including areas with frequent (mycetoma belt) and rare actinomycetoma cases of illness. RESULTS: Using selective media, 173 Streptomyces isolates were recovered from 17 sites representing three ecoregions and different vegetation and ecological subdivisions in Sudan. In total, 115 strains of the 173 (66.5%) displayed antagonism against S. sudanensis with different levels of inhibition. Strains isolated from the South Saharan steppe and woodlands ecoregion (Northern Sudan) exhibited higher inhibitory potential than those strains isolated from the East Sudanian savanna ecoregion located in the south and southeastern Sudan, or the strains isolated from the Sahelian Acacia savanna ecoregion located in central and western Sudan. According to 16S rRNA gene sequence analysis, isolates were predominantly related to Streptomyces werraensis, S. enissocaesilis, S. griseostramineus and S. prasinosporus. Three clusters of isolates were related to strains that have previously been isolated from human and animal actinomycetoma cases: SD524 (Streptomyces sp. subclade 6), SD528 (Streptomyces griseostramineus) and SD552 (Streptomyces werraensis). CONCLUSION: The in vitro inhibitory potential against S. sudanensis was proven for more than half of the soil streptomycetes isolates in this study and this potential may contribute to suppressing the abundance and virulence of S. sudanensis. The streptomycetes isolated from the mycetoma free South Saharan steppe ecoregion show the highest average inhibitory potential. Further analyses suggest that mainly soil properties and rainfall modulate the structure and function of Streptomyces species, including their antagonistic activity against S. sudanensis.


Assuntos
Micetoma/prevenção & controle , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Streptomyces/classificação , Antibiose , DNA Bacteriano/genética , DNA Ribossômico/genética , Florestas , Pradaria , Humanos , Filogenia , Microbiologia do Solo , Sudão do Sul , Streptomyces/genética , Streptomyces/isolamento & purificação , Streptomyces/patogenicidade , Streptomyces/fisiologia , Sudão
2.
BMC Microbiol ; 12: 164, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22852578

RESUMO

BACKGROUND: Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. RESULTS: Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum). The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol) and siderophores (e.g. ferulic acid, desferroxiamines). Plant disease resistance was activated by a single streptomycete strain only. CONCLUSIONS: Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites.


Assuntos
Antibacterianos/metabolismo , Antifúngicos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Micorrizas/efeitos dos fármacos , Micorrizas/crescimento & desenvolvimento , Streptomyces/isolamento & purificação , Streptomyces/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Interações Microbianas , Dados de Sequência Molecular , Filogenia , Picea/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/classificação , Streptomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...